Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Michael Bolte, ${ }^{\text {a }}$ Klaus Eckstein ${ }^{\text {a }}$ and A. Stephen K. Hashmi ${ }^{\mathbf{b} *}$

${ }^{\text {a }}$ Institut für Anorganische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Strasse 11, 60439 Frankfurt/Main, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.048$
$w R$ factor $=0.130$
Data-to-parameter ratio $=25.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

meso-4,5-Dihydroxy-4,5-dimethylocta-1,7-diyne

Molecules of the title compound, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$, are connected by intermolecular hydrogen bonds, forming zigzag chains running in the b-axis direction. In addition, the two hydroxyl groups form an intramolecular hydrogen bond.

Comment

Allenyl methyl ketone is an important allenic building block for organic synthesis (Schuster \& Coppola, 1984; Krause \& Hashmi, 2004; Hashmi et al., 1997, 2000). However, significant amounts of by-products are formed, even in the most efficient of the reported syntheses (Buono \& Llinas, 1981; Buono, 1981; Hussain \& Agosta, 1981). As a new route, we selected diacetyl as the starting material which, after the addition of two equivalents of propargyl magnesium bromide (Brandsma, 1988), should deliver the title compound, (I). A subsequent glycol cleavage with periodic acid (Elks et al., 1954) should then provide methyl propargyl ketone, which was expected to finally isomerize to allenyl methyl ketone when treated with a mild base (Hashmi et al., 1998; for a general treatment of these isomerizations, see Krause \& Hashmi, 2004). Unfortunately, periodate failed in the oxidative cleavage; only the problematic reagent lead(IV) acetate gave the desired reaction, which synthetically was not a step forward.

(I)

A perspective view of (I) is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 1.6 plus three updates; MOGUL Version 1.0; Allen, 2002). (I) is a meso-compound with opposite configurations of the two chiral centres. The molecular conformation of (I) is determined by an intramolecular hydrogen bond (Table 2). The two hydroxyl groups are in a synclinal orientation. On the other hand, an antiperiplanar conformation is found for atoms $\mathrm{C} 2, \mathrm{C} 5$ and $\mathrm{C} 4, \mathrm{C} 7$ (Table 1). In the crystal structure, the molecules form hydrogen-bonded zigzag chains running in the b-axis direction (Fig. 2).

Experimental

Following a general procedure of Brandsma (1988) for the addition of allenyl magensium bromide to carbonyl compounds and after a purification by column chromatography on silica gel (hexanes-ethyl acetate $5: 2 v / v$), a 43% yield of a 1:1 mixture of both diastereomers of

Figure 1
A perspective view of the title compound with the atom numbering; displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bond is drawn as a dashed line.

Figure 2
A partial packing diagram of the title compound, showing the hydrogen bonds as dashed lines.
the title compound was obtained. This mixture could be separated by preparative HPLC. syn-Diastereomer (m.p. 308-310 K): IR (film, $\mathrm{KBr}): 3523,3448,3292,2985,2946,2117,1458,1426,1381,1355,1232$, 1138, 1072, $953 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta 2.75(d d, J=$ $16.7 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(s, 2 \mathrm{H}), 2.45(d d, J=16.7 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.11(t, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(s, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right): \delta$ 80.9 (quart. C, 2C), 75.1 (quart. C, 2C), $71.4(\mathrm{CH}, 2 \mathrm{C}), 27.6\left(\mathrm{CH}_{3}, 2 \mathrm{C}\right)$, $21.6\left(\mathrm{CH}_{2}, 2 \mathrm{C}\right)$. Elemental analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$: C 72.26, H 8.49\%; found: C 72.08, H 8.40\%. meso-Diastereomer (m.p. 306308 K): IR (film, KBr): 3533, 3446, 3294, 2984, 2943, 2117, 1452, 1424, 1376, 1356, 1236, 1112, 1074, $936 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta$ $2.64(d d d, J=16.6 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 0.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(s, 2 \mathrm{H}), 2.43(d d, J=$ $16.7 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(t, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(d, J=0.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right): \delta 80.6$ (quart. C, 2 C), 75.1 (quart. C, 2C), $71.6(\mathrm{CH}, 2 \mathrm{C}), 27.6\left(\mathrm{CH}_{3}, 2 \mathrm{C}\right), 22.2\left(\mathrm{CH}_{2}, 2 \mathrm{C}\right)$. Elemental analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$: C 72.26, H 8.49%; found: C 72.00, H 8.46%. Single crystals of the title compound were grown by slow evaporation of a solution in diethyl ether.

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$
$M_{r}=166.21$
Monoclinic, $P 2_{1} / c$
$D_{x}=1.146 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8192
reflections
$b=10.120$ (2) \AA
$c=11.394$ (2) \AA
$\beta=107.25$ (3) ${ }^{\circ}$
$V=963.6$ (4) \AA^{3}
$\theta=3.2-24.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.47 \times 0.41 \times 0.32 \mathrm{~mm}$

Data collection

Siemens SMART CCD three-circle diffractometer
ω scans
Absorption correction: none
20872 measured reflections
2802 independent reflections
2245 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=31.4^{\circ}$
$h=-12 \rightarrow 12$
$k=-14 \rightarrow 13$
$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0582 P)^{2}\right. \\
& \quad+0.3195 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 2$	$1.188(2)$	$\mathrm{C} 5-\mathrm{O} 51$	$1.4395(14)$
$\mathrm{C} 4-\mathrm{O} 41$	$1.4308(14)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.1920(19)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-170.80(11)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-171.71(10)$
$\mathrm{O} 41-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 51$	$-53.73(11)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O41-H41 \cdots O51 ${ }^{\mathrm{i}}$	0.84	1.98	$2.8071(12)$	166
O51-H51 OO41	0.84	2.17	$2.6298(13)$	115
Symmetry code: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$				

H atoms were located in a difference electron density map, but refined with fixed individual displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=\right.$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ or $1.5 U_{\text {eq }}$ (methyl C)] using a riding-model, with $\mathrm{C}-\mathrm{H}=$ $0.95-0.99 \AA$ and $\mathrm{O}-\mathrm{H}=0.84 \AA$. In addition, the torsion angles about the $\mathrm{C}-\mathrm{O}$ bonds of the hydroxy groups were refined.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Brandsma, L. (1988). Preparative Acetylenic Chemistry, pp. 95-96. Amsterdam: Elsevier.

organic papers

Buono, G. (1981). Synthesis, pp. 872-872.
Buono, G. \& Llinas, J. R. (1981). J. Am. Chem. Soc. 103, 4532-4540.
Elks, J., Phillipps, G. H., Taylor, D. A. H. \& Wyman, L. J. (1954). J. Chem. Soc. pp. 1739-1749.
Hashmi, A. S. K., Bats, J. W., Choi, J.-H. \& Schwarz, L. (1998). Tetrahedron Lett. 39, 7491-7494.
Hashmi, A. S. K., Ruppert, T. L., Knöfel, T. \& Bats, J. W. (1997). J. Org. Chem. 62, 7295-7304.
Hashmi, A. S. K., Schwarz, L., Choi, J.-H. \& Frost, T. M. (2000). Angew. Chem. Int. Ed. 39, 2285-2288.
Hussain, S. \& Agosta, W. C. (1981). Tetrahedron, 37, 3301-3306.

Krause, N. \& Hashmi, A. S. K. (2004). Modern Allene Chemistry, pp. 3-50. Weinheim: Wiley-VCH
Schuster, H. F. \& Coppola, G. M. (1984). Allenes in Organic Chemistry. New York: Wiley.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

